Corsi di Laurea Corsi di Laurea Magistrale Corsi di Laurea Magistrale
a Ciclo Unico
Scuola di Ingegneria
INGEGNERIA CIVILE
Insegnamento
ADVANCED SOLID MECHANICS
INP7082017, A.A. 2017/18

Informazioni valide per gli studenti immatricolati nell'A.A. 2017/18

Principali informazioni sull'insegnamento
Corso di studio Corso di laurea magistrale in
INGEGNERIA CIVILE (Ord. 2017)
IN0517, ordinamento 2017/18, A.A. 2017/18
N0
porta questa
pagina con te
Curriculum CIVIL ENGINEERING IN COOPERATION WITH ENSTP [006PD]
Crediti formativi 6.0
Tipo di valutazione Voto
Denominazione inglese ADVANCED SOLID MECHANICS
Dipartimento di riferimento Dipartimento di Ingegneria Civile, Edile e Ambientale (ICEA)
Obbligo di frequenza No
Lingua di erogazione INGLESE
Sede PADOVA
Corso singolo NON è possibile iscriversi all'insegnamento come corso singolo
Corso a libera scelta NON è possibile utilizzare l'insegnamento come corso a libera scelta

Docenti
Nessun docente assegnato all'insegnamento

Dettaglio crediti formativi
Tipologia Ambito Disciplinare Settore Scientifico-Disciplinare Crediti
CARATTERIZZANTE Ingegneria civile ICAR/08 6.0

Modalità di erogazione
Periodo di erogazione Annuale
Anno di corso I Anno
Modalità di erogazione frontale

Organizzazione della didattica
Tipo ore Crediti Ore di
Corso
Ore Studio
Individuale
Turni
LEZIONE 6.0 48 102.0 Nessun turno

Calendario
Inizio attività didattiche 02/10/2017
Fine attività didattiche 15/06/2018

Syllabus
Prerequisiti:
Conoscenze e abilita' da acquisire:
Modalita' di esame:
Criteri di valutazione:
Contenuti: Vector, matrix and Tensor algebra: Definition of scalar, vector and matrix, transpose of matrix and vector, vector and matrix products, inverse of a matrix, linear system representation, linear and quadratic functions, tensorial quantities and main operations between tonsorial entities. Eigenvalues and Eigenvectors problem.
The incremental elasto-plasticity: Incremental elasto-plasticity for the uniaxial case: elasto – plastic behaviour of ductile materials; total, elastic and plastic stress; tangent modulus, direct and inverse relations, hardening, softening and perfect (ideal) plasticity; analytical formulation of the incremental elasto-plasticity 1D: plastic functions, amounts of plastic deformations, consistency conditions for the
plasticization process; the hardening matrix, the isotropic, kinematic and cyclic linear hardening; Koiter Hardening; graphs for the hardening cases, analytical derivation of the direct and inverse relation for the incremental formulation, the relation between hardening coefficients and tangent modulus; the associated incremental elasto-plasticity for the multiaxial case: the plastic flow rule and the normality condition, the instant elastic domain as extension of the yielding criterion for ductile material (Tresca and von Mises); the Prager's consistency law, the isotropic, kinematic and cyclic linear hardening; summary of the associated Incremental elasto-plasticity; exercise on the determination of the stress state for an elasto-plastic material.
Two-dimensional plastic collapse: Introduction of the concept of structural failure and collapse: tensile stress test diagram and yielding and failure limits for steel; plastic collapse on inflected beams; the linear relation between curvature and strain; the elastic limit moment and curvature; calculation of the moment on a plasticized section; the plastic hinge and the collapse moment;
Exercise on the calculus of the collapse model on a general section; definition of the elastic limit multiplier and the collapse multiplier; calculus of the collapse multiplier for a simple structure; examples; exercise in class + training activity with a structural analysis software.
Damage mechanics and introduction to the concept of viscosity; the irreversibility concept of damage and fracture; the damaging process in different construction material; the phenomenological aspects and different approaches to the study of damage; the Kachanov and Lemaitre-Chaboche approach and the effective stress concept, uniaxial constitutive model for damaged materials, the elasto-damaged constitutive law of Mazars and the isotropic damage; the analogical models for viscosity; the viscous-elasticity; creep and relaxation; the Kelvin-Voight model; the Maxwell model.
Plane states and plate in flexure: plane stress and strain states; the plate element; the plate in flexure; the Kirchhoff kinematic hypothesis; the characteristics of internal reactions; the indefinite equations of equilibrium and the constitutive equations for plates; the Sophie-Germain’s equations; the Airy’s function.
Introduction to the structural dynamics: Differences between static and dynamic approach; the dynamic structural behaviour; the deterministic and not deterministic approach; dynamic load type;
the definitions of single / multiple degree of freedom system; D’Alambert principle; the modal analysis.
Attivita' di apprendimento previste e metodologie di insegnamento:
Eventuali indicazioni sui materiali di studio:
Testi di riferimento: