Corsi di Laurea Corsi di Laurea Magistrale Corsi di Laurea Magistrale
a Ciclo Unico
Scuola di Scienze
MATEMATICA
Insegnamento
SISTEMI DINAMICI
SCP3051008, A.A. 2018/19

Informazioni valide per gli studenti immatricolati nell'A.A. 2018/19

Principali informazioni sull'insegnamento
Corso di studio Corso di laurea magistrale in
MATEMATICA
SC1172, ordinamento 2011/12, A.A. 2018/19
N0
porta questa
pagina con te
Curriculum GENERALE [010PD]
Crediti formativi 7.0
Tipo di valutazione Voto
Denominazione inglese DYNAMIC SISTEMS
Sito della struttura didattica http://matematica.scienze.unipd.it/2018/laurea_magistrale
Dipartimento di riferimento Dipartimento di Matematica
Obbligo di frequenza No
Lingua di erogazione ITALIANO
Sede PADOVA
Corso singolo È possibile iscriversi all'insegnamento come corso singolo
Corso a libera scelta È possibile utilizzare l'insegnamento come corso a libera scelta

Docenti
Responsabile FRANCESCO FASSO' MAT/07

Dettaglio crediti formativi
Tipologia Ambito Disciplinare Settore Scientifico-Disciplinare Crediti
CARATTERIZZANTE Formazione modellistico-applicativa MAT/07 7.0

Organizzazione dell'insegnamento
Periodo di erogazione Secondo semestre
Anno di corso I Anno
Modalità di erogazione frontale

Tipo ore Crediti Ore di
didattica
assistita
Ore Studio
Individuale
ESERCITAZIONE 3.0 24 51.0
LEZIONE 4.0 32 68.0

Calendario
Inizio attività didattiche 25/02/2019
Fine attività didattiche 14/06/2019
Visualizza il calendario delle lezioni Lezioni 2019/20 Ord.2011

Commissioni d'esame
Commissione Dal Al Membri
7 Sistemi Dinamici - a.a. 2018/2019 01/10/2018 30/09/2019 FASSO' FRANCESCO (Presidente)
CARDIN FRANCO (Membro Effettivo)
BENETTIN GIANCARLO (Supplente)
BERNARDI OLGA (Supplente)
FAVRETTI MARCO (Supplente)
GUZZO MASSIMILIANO (Supplente)
PONNO ANTONIO (Supplente)

Syllabus
Prerequisiti: 1. Conoscenze di base sulle equazioni differenziali ordinarie e la teoria qualitativa delle equazioni differenziali ordinarie, al livello di quanto fatto per esempio nel corso di "Fisica Matematica" del II anno della laurea in Matematica di questo Ateneo.
2. Per la parte numerica, e` utile una conoscenza di base del linguaggio di programmazione "Mathematica", al livello dei tutorial periodicamente offerti dal CCS e disponibili sul canale YouTube del Dipartimento di Matematica.
Conoscenze e abilita' da acquisire: Il corso fornisce un'introduzione ai sistemi dinamici differenziabili, particolarmente continui (=equazioni differenziali ordinarie), ma anche discreti (=iterazioni di mappe). Una prima parte del corso fornisce una panoramica di risultati classici sulle equazioni differenziali, con attenzione ad orbite periodiche (mappe di Poincare'), classificazione locale, varieta` stabile centrale, etc. Ci si focalizzera` quindi sulla differenza fra integrabilita` e, nel caso iperbolico, caoticita`. Il corso e` completato da esercitazioni numeriche al calcolatore, svolte dagli studenti in aula, volte a far acquisire tecniche e competenze di base necessarie all'investigazione numerica delle equazioni differenziali ordinarie e all'analisi numerica dei sistemi dinamici.
Lo studente acquisira` conoscenze approfondite su questi argomenti della teoria dei sistemi dinamici differenziabili e sviluppera` una capacita` di studiare tali problemi con tecniche analitiche e numeriche. L'analisi di un certo numero di applicazioni favorira` tale apprendimento.
Modalita' di esame: Orale, con discussione di argomenti di teoria e discussione degli elaborati numerici assegnati durante il corso. Per lo svolgimento degli elaborati numerici gli studenti potranno lavorare a loro scelta individualmente o (raccomandato) a coppie. All'orale potranno anche essere richiesti semplici esercizi.
Questo format dell'esame permette di valutare 1) il livello di conoscenze teoriche raggiunto dallo studente, 2) il livello di comprensione matematica della materia conseguito dallo studente, e 3) la capacita` di investigazione numerica dei sistemi dinamici, ed in particolare di analisi e comprensione dei risultati numerici, raggiunta dallo studente.
Criteri di valutazione: Verranno valutati la conoscenza della materia, il livello di comprensione matematica della materia, la qualita` del lavoro numerico, e la capacita` di analisi ed interpretazione dei risultati del lavoro numerico svolto nel quadro teorico sviluppato nel corso.
Contenuti: 1. Sistemi dinamici continui (equazioni differenziali ordinarie, flussi) e discreti (iterazioni di mappe). Linearizzazione, equazione alle variazioni. Sistemi dinamici lineari continui e discreti; sottospazi stabile, instabile e centrale.
2. Orbite periodiche: mappa di Poincare'; stabilita`: matrice di monodromia. Applicazioni.
3. Punti fissi iperbolici: teorema di Grobman-Hartman, teorema della varieta` stabile.
4. Integrabilita`. Invarianza di un'equazione differenziale sotto un'azione di gruppo, riduzione. Simmetrie dinamiche. Teorema di integrabilita` di Bogoyavlenskij. Applicazioni ai sistemi Hamiltoniani.
5. Sistemi iperbolici e fenomeni omoclini; ferro di cavallo di Smale; dinamica simbolica; metodo di Melnikov; shadowing.
6. Esponenti di Lyapunov.
7. Esperimenti numerici sulle equazioni differenziali.
Attivita' di apprendimento previste e metodologie di insegnamento: Lezioni frontali. Lezioni in laboratorio numerico. Svolgimento individuale o (raccomandato) a piccoli gruppi di lavori numerici.
Eventuali indicazioni sui materiali di studio: I prerequisiti sulla teoria qualitativa delle equazioni differenziali sono coperti, per esempio, in
1. V.I. Arnold, Equazioni Differenziali Ordianrie (MIR, 1979)
2. M.W. Hirsh e S. Smale, Differential equations, dynamical systems, and linear algebra (Academic Press, 1974)
3. F. Fasso`, Primo sguardo ai sistemi dinamici. CLEUP

Il programma del corso e` coperto in dispense del docente, che verranno distribuite durante il corso e, per certi argomenti in
4. G. Benettin, "Introduzione ai sistemi dinamici-Cap. 2: Introduzione ai Sistemi Dinamici Iperbolici"
(http://www.math.unipd.it/~benettin/)

Fra i testi di consultazione si segnalano:
5. E. Zhender, Lectures on Dynamical Systems (EMS, 2010)
6. C. Chicone, Ordinary Differential Equations with Application (II ed), Springer.

Il lavoro in laboratorio utilizzera` il software Mathematica; una conoscenza elementare del suo utilizzo e` opportuna. Un tutorial in due lezioni e` scaricabile dal canale YouTube del Dipartimento di Matematica
https://www.youtube.com/watch?v=JfRzv6r0wqM
https://www.youtube.com/watch?v=tUuwgiGipfw
Testi di riferimento:

Didattica innovativa: Strategie di insegnamento e apprendimento previste
  • Laboratory
  • Working in group
  • Files e pagine caricati online (pagine web, Moodle, ...)

Didattica innovativa: Software o applicazioni utilizzati
  • Moodle (files, quiz, workshop, ...)
  • Mathematica